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1 Overview

In the last lecture we detailed the information processing task for channel coding, and we discussed
an overview of Shannon’s Channel Capacity Theorem.

In this lecture, we begin with the formal definition of a conditionally typical set and prove three
important properties regarding it. Next we provide a detailed proof of Shannon’s channel capacity
theorem, discussing the decoding algorithm in detail and analyzing the expectation of the average
error probability.

2 Conditionally Typical Set

Conditional typicality is a property that we expect to hold for any two random sequences—it is
also a useful tool in the proofs of coding theorems. Suppose two random variables X and Y have
respective alphabets X and Y and a joint distribution pX,Y (x, y). We can factor the joint distri-
bution pX,Y (x, y) as the product of a marginal distribution pX(x) and a conditional distribution
pY |X(y|x), and this factoring leads to a particular way that we can think about generating real-
izations of the joint random variable. We can consider random variable Y to be a noisy version
of X, where we first generate a realization x of the random variable X according to the distri-
bution pX(x) and follow by generating a realization y of the random variable Y according to the
conditional distribution pY |X(y|x).

2.1 Definition of Conditionally Typical Set

Definition 1 (Conditional Sample Entropy). The conditional sample entropy H (yn|xn) of two
sequences xn and yn is

H (yn|xn) = − 1

n
log pY n|Xn (yn|xn) , (1)

where
pY n|Xn (yn|xn) ≡ pY |X (y1|x1) · · · pY |X (yn|xn) . (2)

Definition 2 (Conditionally Typical Set). The δ-conditionally typical set T
Y n|xn
δ consists of all

sequences yn whose conditional sample entropy is δ-close to the true conditional entropy:

T
Y n|xn
δ ≡

{
yn :

∣∣H (yn|xn)−H(Y |X)
∣∣ ≤ δ} . (3)

Figure 1 provides an intuitive picture of the notion of conditional typicality.
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Figure 1: This figure depicts the notion of a conditionally typical set. Associated to every input
sequence xn is a conditionally typical set consisting of the likely output sequences. The size of
this conditionally typical set is ≈ 2nH(Y |X). It is exponentially smaller than the set of all output
sequences whenever the conditional random variable is not uniform.

2.2 Properties of the Conditionally Typical Set

The set T
Y n|xn
δ of conditionally typical sequences enjoys the following three properties:

2.2.1 Unit Probability

Property 2.1 (Unit Probability). The set T
Y n|xn
δ asymptotically has probability one when the

sequence xn is random. So as n becomes large, it is highly likely that random sequences Y n and Xn

are such that Y n is a conditionally typical sequence. We formally state this property as follows:

∀ε > 0 EXn

{
Pr

Y n|Xn

{
Y n ∈ T Y

n|Xn

δ

}}
≥ 1− ε for sufficiently large n. (4)

We now prove the first property. This is just again another application of the law of large numbers.
Consider that

EXn

{
Pr

Y n|Xn

{
Y n ∈ T Y

n|Xn

δ

}}
= EXn

{
EY n|Xn

{
I
T
Y n|Xn
δ

(Y n)
}}

(5)

= EXn,Y n

{
I
T
Y n|Xn
δ

(Y n)
}

(6)

=
∑

xn∈Xn,yn∈Yn
pXn,Y n(xn, yn)I

T
Y n|xn
δ

(yn), (7)

where I denotes an indicator function. Given random variables X and Y , let us define the random
variable g(X,Y ) = − log pY |X(Y |X). Consider that the sample conditional entropy H(Y n|Xn) for
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the random sequences Xn and Y n factors as follows:

H(Y n|Xn) = − 1

n
log pY n|Xn(Y n|Xn) (8)

=
1

n

n∑
i=1

[
− log pY |X(Yi|Xi)

]
(9)

=
1

n

n∑
i=1

g (Xi, Yi) . (10)

This is the sample average of the random variable g(X,Y ) and the expectation of this random
variable is

EX,Y {g(X,Y )} = EX,Y {
[
− log pY |X(Y |X)

]
} (11)

=
∑
x,y

pX,Y (x, y)
[
− log pY |X(y|x)

]
(12)

= H(Y |X). (13)

Given all of the above, we can rewrite (7) as follows:

Pr
XnY n

{∣∣∣∣∣ 1n
n∑
i=1

g (Xi, Yi)− EX,Y {g(X,Y )}

∣∣∣∣∣ ≤ δ
}
. (14)

By applying the law of large numbers, this is larger than 1 − ε for all ε ∈ (0, 1) and sufficiently
large n.

2.2.2 Exponentially Smaller Cardinality

Property 2.2 (Exponentially Smaller Cardinality). The number
∣∣∣T Y n|xnδ

∣∣∣ of δ-conditionally typical

sequences is exponentially smaller than the total number |Y|n of sequences for any conditional
random variable Y |X that is not uniform. We formally state this property as follows:∣∣∣T Y n|xnδ

∣∣∣ ≤ 2n(H(Y |X)+δ). (15)

We can also lower bound the expected size of the δ-conditionally typical set when n is sufficiently
large and xn is a random sequence:

∀ε > 0 EXn

{∣∣∣T Y n|Xn

δ

∣∣∣} ≥ (1− ε) 2n(H(Y |X)−δ) for sufficiently large n. (16)

2.2.3 Equipartition

Property 2.3 (Equipartition). The probability of a given δ-conditionally typical sequence yn (cor-
responding to the sequence xn) is approximately uniform:

2−n(H(Y |X)+δ) ≤ pY n|Xn (yn|xn) ≤ 2−n(H(Y |X)−δ). (17)
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3 Decoding Algorithm and Error Analysis

3.1 Steps for Decoding

After receiving the sequence yn from the channel outputs, Bob performs the following decoding
algorithm:

1. Test whether yn is in the typical set T Y
n

δ corresponding to the distribution

pY (y) ≡
∑
x

pY |X(y|x)pX(x).

If it is not, then he reports an error.

2. He then tests if there is some message m such that the sequence yn is in the conditionally

typical set T
Y n|xn(m)
δ . If m is the unique message such that yn ∈ T Y

n|xn(m)
δ , then he declares

m to be the transmitted message. If there is no message m such that yn ∈ T
Y n|xn(m)
δ or

multiple messages m′ such that yn ∈ T Y
n|xn(m′)

δ , then he reports an error.

Observe that the decoder is a function of the channel, so that we might say that we construct
channel codes “from the channel.”

3.2 Error Analysis

As discussed in the above decoding algorithm, there are three kinds of errors that can occur in this
communication scheme when Alice sends the codeword xn(m) over the channels:

E0(m): The event that the channel output yn is not in the typical set T Y
n

δ .

E1(m): The event that the channel output yn is in T Y
n

δ but not in the conditionally typical set

T
Y n|xn(m)
δ .

E2(m): The event that the channel output yn is in T Y
n

δ but it is in the conditionally typical set for
some other message: {

yn ∈ T Y nδ

}
and

{
∃m′ 6= m : yn ∈ T Y

n|xn(m′)
δ

}
. (18)

It is helpful to analyze the expectation of the average error probability, where the expectation is with
respect to the random selection of the code and the average is with respect to a uniformly random
choice of the message m. Let C ≡ {Xn(1), Xn(2), . . . , Xn(|M|)} denote the random variable
corresponding to the random selection of a code. The expectation of the average error probability
of a randomly selected code is as follows:

EC

{
1

|M|
∑
m

Pr {E0(m) ∪ E1 (m) ∪ E2(m)}

}
. (19)
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Our first “move” is to exchange the expectation and the sum, following from linearity of the
expectation:

1

|M|
∑
m

EC {Pr {E0(m) ∪ E1(m) ∪ E2(m)}} . (20)

Since all codewords are selected in the same way (randomly and independently of the message m
and according to the same distribution pXn(xn)), the following equality holds for all m,m′ ∈M:

EC {Pr {E0(m) ∪ E1(m) ∪ E2(m)}} = EC
{

Pr
{
E0(m′) ∪ E1(m′) ∪ E2(m′)

}}
, (21)

implying that it suffices to analyze EC {Pr {E0(m) ∪ E1(m) ∪ E2(m)}} for just a single message m.
Without loss of generality, we can pick m = 1 (the first message). Using the above, we find that
the expectation of the average error probability simplifies as follows:

1

|M|
∑
m

EC {Pr {E0(m) ∪ E1(m) ∪ E2(m)}} = EC {Pr {E0 (1) ∪ E1 (1) ∪ E2 (1)}} . (22)

So we can then apply the union bound:

EC {Pr {E0(1) ∪ E1(1) ∪ E2(1)}}
≤ EC {Pr {E0 (1)}}+ EC {Pr {E1(1)}}+ EC {Pr {E2(1)}} . (23)

We now analyze each error individually. For each of the above events, we can exploit indicator
functions in order to simplify the error analysis (we are also doing this to help build a bridge
between this classical proof and the packing lemma approach for the quantum case—projectors in
some sense replace indicator functions later on). Recall that an indicator function IA (x) is equal
to one if x ∈ A and equal to zero otherwise. So the following three functions being equal to one or
larger then corresponds to error events E0(1), E1(1), and E2(1), respectively:

1− ITY nδ (yn) , (24)

ITY nδ
(yn)

(
1− I

T
Y n|xn(1)
δ

(yn)
)
, (25)∑

m′ 6=1

ITY nδ
(yn) I

T
Y n|xn(m′)
δ

(yn) . (26)

(The last sum of indicators is a consequence of applying the union bound again to the error E2(1),
which itself is a union of events.)

By exploiting the indicator function from (24), we have that

EC {Pr {E0 (1)}}

= EXn(1)

{
EY n|Xn(1)

{
1− ITY nδ (Y n)

}}
(27)

= 1− EXn(1),Y n

{
ITY nδ

(Y n)
}

(28)

= 1− EY n
{
ITY nδ

(Y n)
}

(29)

= Pr
{
Y n /∈ T Y nδ

}
≤ ε, (30)

where the first line follows because Y n is generated according to the conditional distribution pY n|Xn

and from Xn(1) (since the first message was transmitted) and all other codewords have no role in

5



the test, so that we marginalize over them. In the last line we have exploited the high probability
property of the typical set T Y

n

δ . In the above, we are also exploiting the fact that E {IA} = Pr {A}.
By exploiting the indicator function from (25), we have that

EC {Pr {E1 (1)}}

= EXn(1)

{
EY n|Xn(1)

{
ITY nδ

(Y n)
(

1− I
T
Y n|Xn(1)
δ

(Y n)
)}}

(31)

≤ EXn(1)

{
EY n|Xn(1)

{
1− I

T
Y n|Xn(1)
δ

(Y n)
}}

(32)

= 1− EXn(1)

{
EY n|Xn(1)

{
I
T
Y n|Xn(1)
δ

(Y n)
}}

(33)

= EXn(1)

{
Pr

Y n|Xn(1)

{
Y n /∈ T Y

n|Xn(1)
δ

}}
≤ ε, (34)

where in the last line we have exploited the high probability property of the conditionally typical set

T
Y n|Xn(1)
δ . We finally consider the probability of the last kind of error by exploiting the indicator

function in (26):

EC {Pr {E2 (1)}}

≤ EC

∑
m′ 6=1

ITY nδ
(yn)I

T
Y n|Xn(m′)
δ

(yn)

 (35)

=
∑
m′ 6=1

EC
{
ITY nδ

(yn)I
T
Y n|Xn(m′)
δ

(yn)

}
(36)

=
∑
m′ 6=1

EXn(1),Xn(m′),Y n

{
ITY nδ

(yn)I
T
Y n|Xn(m′)
δ

(yn)

}
(37)

=
∑
m′ 6=1

∑
xn(1),xn(m′),yn

pXn(xn(1))pXn(xn(m′))×

pY n|Xn(yn|xn(1))ITY nδ
(yn)I

T
Y n|xn(m′)
δ

(yn) (38)

=
∑
m′ 6=1

∑
xn(m′),yn

pXn(xn(m′))pY n(yn)ITY nδ
(yn)I

T
Y n|xn(m′)
δ

(yn) . (39)

The first inequality is from the union bound, and the first equality follows from the way that
we select the random code: for every message m, the codewords are selected independently and
randomly according to pXn so that the distribution for the joint random variable Xn(1)Xn(m′)Y n

is
pXn(xn(1)) pXn(xn(m′)) pY n|Xn(yn|xn(1)). (40)

The second equality follows from marginalizing over Xn(1). Continuing, we have

≤ 2−n[H(Y )−δ]
∑
m′ 6=1

∑
xn(m′),yn

pXn(xn(m′))I
T
Y n|xn(m′)
δ

(yn) (41)

= 2−n[H(Y )−δ]
∑
m′ 6=1

∑
xn(m′)

pXn(xn(m′))
∑
yn

I
T
Y n|xn(m′)
δ

(yn) (42)

≤ 2−n[H(Y )−δ]2n[H(Y |X)+δ]
∑
m′ 6=1

∑
xn(m′)

pXn(xn(m′)) (43)

≤ |M| 2−n[I(X;Y )−2δ]. (44)
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The first inequality follows from the bound pY n(yn)ITY nδ
(yn) ≤ 2−n[H(Y )−δ] that holds for typical

sequences. The second inequality follows from the cardinality bound
∣∣∣T Y n|xn(m′)
δ

∣∣∣ ≤ 2n[H(Y |X)+δ]

on the conditionally typical set. The last inequality follows because∑
xn(m′)

pXn(xn(m′)) = 1, (45)

|M| is an upper bound on
∑

m′ 6=1 1 = |M| − 1, and by the identity I(X;Y ) = H(Y ) −H(Y |X).

Thus, we can make this error arbitrarily small by choosing the message set size |M| = 2n[I(X;Y )−3δ].
Putting everything together, we have the following bound on (19):

ε′ ≡ 2ε+ 2−nδ, (46)

as long as we choose the message set size as given above. It follows that there exists a particular
code with the same error bound on its average error probability. We can then exploit an expurgation
argument to convert an average error bound into a maximal one (the expurgation step throws away
the worse half of the codewords, guaranteeing a bound of 2ε′ on the maximum error probability).
Thus, we have shown the achievability of an (n,C(N )− δ′, 2ε′) channel code for all δ′ > 0, ε′ ∈
(0, 1/2) and sufficiently large n (where δ′ = 3δ). Finally, as a simple observation, our proof above
does not rely on whether the definition of conditional typicality employed is weak or strong.
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