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1 Overview

In the last lecture we presented the notions of an ensemble of quantum states and a density operator.
We also discussed unitary evolution of the density operator and measurement of a density operator.

In this lecture we continue our development of the noisy quantum theory, discussing a more general
model of measurements, the POVM formalism, product states, separable states, and the partial
trace operation.

The material is coming from Chapter 4 of http://markwilde.com/qit-notes.pdf .

2 Measurement in the Noisy Quantum Theory

We have described measurement in the quantum theory using a set of projectors that form a
resolution of the identity. For example, the set {Πj}j of projectors that satisfy the condition∑

j Πj = I form a valid von Neumann quantum measurement. A projective measurement is not
the most general measurement that we can perform on a quantum system (though it is certainly
one valid type of quantum measurement).

There is a more general description of quantum measurements that follows from allowing the system
of interest to interact unitarily with a probe system that we measure after the interaction occurs.
So suppose that the system of interest is in a state |ψ〉S and that the probe is in a state |0〉P , so
that the overall state before anything happens is as follows:

|ψ〉S ⊗ |0〉P . (1)

Let {|0〉P , |1〉P , . . . , |d − 1〉P } be an orthonormal basis for the probe system (assuming that it has
dimension d). Now suppose that the system and the probe interact according to a unitary USP ,
and then we perform a measurement of the probe system, described by measurement operators
{|j〉〈j|P }. The probability to obtain outcome j is

pJ(j) =
(
〈ψ|S ⊗ 〈0|PU †SP

)
(IS ⊗ |j〉〈j|P ) (USP |ψ〉S ⊗ |0〉P ) , (2)

and the post-measurement state upon obtaining outcome j is

1√
pJ(j)

(IS ⊗ |j〉〈j|P ) (USP |ψ〉S ⊗ |0〉P ) . (3)
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We can rewrite the expressions above in a simpler way. Let us expand the unitary operator USP
in the orthonormal basis of the probe system P as follows:

USP =
∑
j,k

M j,k
S ⊗ |j〉〈k|P , (4)

where {M j,k
S } is a set of operators. Up to a permutation of the S and P systems and using the

mathematics of the tensor product, this is the same as writing the unitary USP as follows:
M0,0
S M0,1

S · · · M0,d−1
S

M1,0
S M1,1

S · · · M1,d−1
S

...
...

. . .
...

Md−1,0
S Md−1,1

S · · · Md−1,d−1
S

 . (5)

This set {M j,k
S } needs to satisfy some constraints corresponding to the unitarity of USP . In par-

ticular, consider the following operator:∑
j

M j,0
S ⊗ |j〉〈0|P , (6)

which corresponds to the first column of operator-valued entries in USP , as illustrated in (5). In

what follows, we employ the shorthand M j
S ≡M

j,0
S . From the fact that U †SPUSP = ISP = IS ⊗ IP ,

we deduce that the following equality must hold

IS ⊗ |0〉〈0|P =

∑
j′

M j′†
S ⊗ |0〉〈j

′|P

∑
j

M j
S ⊗ |j〉〈0|P

 (7)

=
∑
j′,j

M j′†
S M j

S ⊗ |0〉
〈
j′|j
〉
〈0|P (8)

=
∑
j

M j†
S M

j
S ⊗ |0〉〈0|P , (9)

where the last line follows from the fact that we chose an orthonormal basis in the representation
of USP in (4). So this implies that the following condition holds∑

j

M j†
S M

j
S = IS . (10)

Plugging (4) into (2) and (3), a short calculation (similar to the above one) reveals that they
simplify as follows:

pJ(j) = 〈ψ|M †jMj |ψ〉 , (11)

1√
pJ(j)

(IS ⊗ |j〉〈j|P ) (USP |ψ〉S ⊗ |0〉P ) =
Mj |ψ〉S ⊗ |j〉P√

pJ(j)
. (12)

Since the system and the probe are in a pure product state (and thus independent of each
other) after the measurement occurs, we can discard the probe system and deduce that the post-
measurement state is simply Mj |ψ〉S /

√
pJ(j).
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Motivated by the above development, we allow for a more general notion of quantum measure-
ment, saying that it consists of a set of measurement operators {Mj}j that satisfy the following
completeness condition: ∑

j

M †jMj = I. (13)

Observe from the above development that this is the only constraint that the operators {Mj} need
to satisfy. This constraint is a consequence of unitarity, but can be viewed as a generalization of
the completeness relation for a set of projectors that constitute a projective quantum measurement.
Given a set of measurement operators of the above form, the probability for obtaining outcome j
when measuring a state |ψ〉 is

pJ(j) ≡ 〈ψ|M †jMj |ψ〉 , (14)

and the post-measurement state when we receive outcome j is

Mj |ψ〉√
pJ(j)

. (15)

Suppose that we instead have an ensemble {pX(x), |ψx〉} with density operator ρ. We can carry out
an analysis similar to that in the last lecture to conclude that the probability pJ(j) for obtaining
outcome j is

pJ(j) ≡ Tr{M †jMjρ}, (16)

and the post-measurement state when we measure result j is

MjρM
†
j

pJ(j)
. (17)

The expression pJ(j) = Tr{M †jMjρ} is a restatement of the Born rule.

2.1 POVM Formalism

Sometimes, we simply may not care about the post-measurement state of a quantum measurement,
but instead we only care about the probability for obtaining a particular outcome. This situation
arises in the transmission of classical data over a quantum channel. In this situation, we are
merely concerned with minimizing the error probabilities of the classical transmission. The receiver
does not care about the post-measurement state because he no longer needs it in the quantum
information-processing protocol.

We can specify a measurement of this sort by some set {Λj}j of operators that satisfy non-negativity
and completeness:

Λj ≥ 0, (18)∑
j

Λj = I. (19)

The set {Λj}j of operators is a positive operator-valued measure (POVM). The probability for
obtaining outcome j is

〈ψ|Λj |ψ〉 , (20)
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if the state is some pure state |ψ〉. The probability for obtaining outcome j is

Tr {Λjρ} , (21)

if the state is in a mixed state described by some density operator ρ. This is another restatement
of the Born rule.

3 Composite Noisy Quantum Systems

We are again interested in the behavior of two or more quantum systems when we join them
together. Some of the most exotic, truly “quantum” behavior occurs in joint quantum systems,
and we observe a marked departure from the classical world.

3.1 Independent Ensembles

Let us first suppose that we have two independent ensembles for quantum systems A and B. The
first quantum system belongs to Alice and the second quantum system belongs to Bob, and they
may or may not be spatially separated. Let {pX(x), |ψx〉} be the ensemble for the system A and
let {pY (y), |φy〉} be the ensemble for the system B. Suppose for now that the state on system A is
|ψx〉 for some x and the state on system B is |φy〉 for some y. Then, using the composite system
postulate of the noiseless quantum theory, the joint state for a given x and y is |ψx〉 ⊗ |φy〉. The
density operator for the joint quantum system is the expectation of the states |ψx〉 ⊗ |φy〉 with
respect to the random variables X and Y that describe the individual ensembles:

EX,Y {(|ψX〉 ⊗ |φY 〉) (〈ψX | ⊗ 〈φY |)} . (22)

The above expression is equal to the following one:

EX,Y {|ψX〉 〈ψX | ⊗ |φY 〉〈φY |} , (23)

because (|ψx〉 ⊗ |φy〉) (〈ψx| ⊗ 〈φy|) = |ψx〉〈ψx| ⊗ |φy〉〈φy|. We then explicitly write out the expec-
tation as a sum over probabilities:∑

x,y

pX(x)pY (y)|ψx〉 〈ψx| ⊗ |φy〉〈φy|. (24)

We can distribute the probabilities and the sum because the tensor product obeys a distributive
property: ∑

x

pX(x)|ψx〉〈ψx| ⊗
∑
y

pY (y)|φy〉〈φy|. (25)

The density operator for this ensemble admits the following simple form:

ρ⊗ σ, (26)

where ρ =
∑

x pX(x)|ψx〉〈ψx| is the density operator of the X ensemble and σ =
∑

y pY (y)|φy〉〈φy|
is the density operator of the Y ensemble. We can say that Alice’s local density operator is ρ
and Bob’s local density operator is σ. The overall state is a tensor product of these two density
operators.

4



Definition 1 (Product State). A density operator which is equal to a tensor product of two or
more density operators is called a product state.

We should expect the density operator to factor as it does above because we assumed that the
ensembles are independent. There is nothing much that distinguishes this situation from the clas-
sical world, except for the fact that the states in each respective ensemble may be non-orthogonal
to other states in the same ensemble. But even here, there is some equivalent description of each
ensemble in terms of an orthonormal basis so that there is really not too much difference between
this description and a joint probability distribution that factors as two independent distributions.

3.2 Separable States

Let us now consider two systems A and B whose corresponding ensembles are correlated in a
classical way. We describe this correlated ensemble as the joint ensemble

{pX(x), |ψx〉 ⊗ |φx〉} . (27)

It is straightforward to verify that the density operator of this correlated ensemble has the following
form:

EX {(|ψX〉 ⊗ |φX〉) (〈ψX | ⊗ 〈φX |)} =
∑
x

pX(x)|ψx〉〈ψx| ⊗ |φx〉〈φx|. (28)

By ignoring Bob’s system, Alice’s local density operator is of the form

EX {|ψX〉 〈ψX |} =
∑
x

pX(x)|ψx〉〈ψx|, (29)

and similarly, Bob’s local density operator is

EX {|φX〉 〈φX |} =
∑
x

pX(x)|φx〉〈φx|. (30)

States of the form in (28) can be generated by a classical procedure. A third party generates a
symbol x according to the probability distribution pX(x) and sends the symbol x to both Alice
and Bob. Alice prepares the state |ψx〉 and Bob prepares the state |φx〉. If they then discard the
symbol x, the state of their systems is given by (28).

We can generalize this classical preparation procedure one step further. Let us suppose that we
first generate a random variable Z according to some distribution pZ(z). We then generate two
other ensembles, conditional on the value of the random variable Z. Let {pX|Z(x|z), |ψx,z〉} be the
first ensemble and let {pY |Z(y|z), |φy,z〉} be the second ensemble, where the random variables X
and Y are independent when conditioned on Z. Let us label the density operators of the first and
second ensembles when conditioned on a particular realization z by ρz and σz, respectively. It is
then straightforward to verify that the density operator of an ensemble created from this classical
preparation procedure has the following form:

EX,Y,Z {(|ψX,Z〉 ⊗ |φY,Z〉) (〈ψX,Z | ⊗ 〈φY,Z |)} =
∑
z

pZ(z)ρz ⊗ σz. (31)
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Exercise 2. By ignoring Bob’s system, we can determine Alice’s local density operator. Show that

EX,Y,Z {|ψX,Z〉 〈ψX,Z |} =
∑
z

pZ(z)ρz, (32)

so that the above expression is the density operator for Alice. It similarly follows that the local
density operator for Bob is

EX,Y,Z {|φY,Z〉〈φY,Z |} =
∑
z

pZ(z)σz. (33)

Exercise 3. Show that we can always write a state of the form in (31) as a convex combination
of pure product states: ∑

z

pZ(z) |φz〉 〈φz| ⊗ |ψz〉 〈ψz| , (34)

by manipulating the general form in (31).

As a consequence of Exercise 3, we see that any state of the form in (31) can be written as a convex
combination of pure product states. Such states are called separable states, defined formally as
follows:

Definition 4 (Separable State). A bipartite density operator σAB is a separable state if it can be
written in the following form:

σAB =
∑
x

pX(x)|ψx〉〈ψx|A ⊗ |φx〉〈φx|B (35)

for some probability distribution pX(x) and sets {|ψx〉A} and {|φx〉B} of pure states.

The term “separable” implies that there is no quantum entanglement in the above state, i.e., there
is a completely classical procedure that prepares the above state. In fact, this is the definition of
entanglement for a general bipartite density operator:

Definition 5 (Entangled State). A bipartite density operator ρAB is entangled if it is not separable.

3.2.1 Separable States and the CHSH Game

One motivation for Definitions 4 and 5 was already given above: for a separable state, there is
a classical procedure that can be used to prepare it. Thus, for an entangled state, there is no
such procedure. That is, a non-classical (quantum) interaction between the systems is necessary to
prepare an entangled state.

Another related motivation is that separable states admit an explanation in terms of a classical
strategy for the CHSH game. Recall from before that classical strategies pAB|XY (a, b|x, y) are of
the following form:

pAB|XY (a, b|x, y) =

∫
dλ pΛ(λ) pA|ΛX(a|λ, x) pB|ΛY (b|λ, y). (36)

If we allow for a continuous index λ for a separable state, then we can write such a state as follows:

σAB =

∫
dλ pΛ(λ) |ψλ〉〈ψλ|A ⊗ |φλ〉〈φλ|B. (37)
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Recall that in a general quantum strategy, there are measurements {Π(x)
a } and {Π(y)

b }, giving output
bits a and b based on the input bits x and y and leading to the following strategy:

pAB|XY (a, b|x, y) = Tr{(Π(x)
a ⊗Π

(y)
b )σAB} (38)

= Tr

{
(Π(x)

a ⊗Π
(y)
b )

(∫
dλ pΛ(λ) |ψλ〉〈ψλ|A ⊗ |φλ〉〈φλ|B

)}
(39)

=

∫
dλ pΛ(λ) Tr

{
Π(x)
a |ψλ〉〈ψλ|A ⊗Π

(y)
b |φλ〉〈φλ|B

}
(40)

=

∫
dλ pΛ(λ) 〈ψλ|AΠ(x)

a |ψλ〉A 〈φλ|BΠ
(y)
b |φλ〉B. (41)

By picking the probability distributions pA|ΛX(a|λ, x) and pB|ΛY (b|λ, y) in (36) as follows:

pA|ΛX(a|λ, x) = 〈ψλ|AΠ(x)
a |ψλ〉A, (42)

pB|ΛY (b|λ, y) = 〈φλ|BΠ
(y)
b |φλ〉B, (43)

we see that there is a classical strategy that can simulate any quantum strategy which uses separable
states in the CHSH game. Thus, the winning probability of quantum strategies involving separable
states are subject to the classical bound of 3/4 derived before. In this sense, such strategies are
effectively classical.

4 Local Density Operators and Partial Trace

4.1 A First Example

Consider the entangled Bell state |Φ+〉AB shared on systems A and B. In the above analyses, we
determined a local density operator description for both Alice and Bob. Now, we are curious if it
is possible to determine such a local density operator description for Alice and Bob with respect to
the state |Φ+〉AB or more general ones.

As a first approach to this issue, recall that the density operator description arises from its usefulness
in determining the probabilities of the outcomes of a particular measurement. We say that the
density operator is “the state” of the system merely because it is a mathematical representation
that allows us to compute the probabilities resulting from a physical measurement. So, if we would
like to determine a “local density operator,” such a local density operator should predict the result
of a local measurement.

Let us consider a local POVM
{

Λj
}
j

that Alice can perform on her system. The global measurement

operators for this local measurement are {ΛjA ⊗ IB}j because nothing (the identity) happens to
Bob’s system. The probability of obtaining outcome j when performing this measurement on the
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state |Φ+〉AB is

〈
Φ+
∣∣
AB

ΛjA ⊗ IB
∣∣Φ+

〉
AB

=
1

2

1∑
k,l=0

〈kk|AB ΛjA ⊗ IB |ll〉AB (44)

=
1

2

1∑
k,l=0

〈k|A ΛjA|l〉A 〈k|l〉B (45)

=
1

2

(
〈0|AΛjA|0〉A + 〈1|AΛjA |1〉A

)
(46)

=
1

2

(
Tr
{

ΛjA|0〉〈0|A
}

+ Tr
{

ΛjA|1〉〈1|A
})

(47)

= Tr

{
ΛjA

1

2
(|0〉〈0|A + |1〉〈1|A)

}
(48)

= Tr
{

ΛjAπA

}
. (49)

The above steps follow by applying the rules of taking the inner product with respect to tensor
product operators. The last line follows by recalling the definition of the maximally mixed state π,
where π here is a qubit maximally mixed state.

The above calculation demonstrates that we can predict the result of any local “Alice” measurement
using the density operator π. Therefore, it is reasonable to say that Alice’s local density operator
is π, and we even go as far to say that her local state is π. A symmetric calculation shows that
Bob’s local state is also π.

4.2 Partial Trace

In general, we would like to determine a local density operator that predicts the outcomes of all
local measurements. The general method for determining a local density operator is to employ
the partial trace operation, which we motivate and define here, as a generalization of the example
discussed at the beginning of Section 4.1.

Suppose that Alice and Bob share a bipartite state ρAB and that Alice performs a local measurement
on her system, described by a POVM {ΛjA}. Then the overall POVM on the joint system is

{ΛjA ⊗ IB} because we are assuming that Bob is not doing anything to his system. According to
the Born rule, the probability for Alice to receive outcome j after performing the measurement is
given by the following expression:

pJ(j) = Tr{(ΛjA ⊗ IB)ρAB}. (50)

In order to evaluate this trace, we can choose any orthonormal basis that we wish (recall the
definition of trace and subsequent statements). Taking {|k〉A} as an orthonormal basis for Alice’s
Hilbert space and {|l〉B} as an orthonormal basis for Bob’s Hilbert space, the set {|k〉A ⊗ |l〉B}
constitutes an orthonormal basis for the tensor product of their Hilbert spaces. So we can evaluate
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(50) as follows:

Tr{(ΛjA ⊗ IB)ρAB} =
∑
k,l

(〈k|A ⊗ 〈l|B)
[
(ΛjA ⊗ IB)ρAB

]
(|k〉A ⊗ |l〉B) (51)

=
∑
k,l

〈k|A (IA ⊗ 〈l|B)
[
(ΛjA ⊗ IB)ρAB

]
(IA ⊗ |l〉B) |k〉A (52)

=
∑
k,l

〈k|AΛjA (IA ⊗ 〈l|B) ρAB (IA ⊗ |l〉B) |k〉A (53)

=
∑
k

〈k|AΛjA

[∑
l

(IA ⊗ 〈l|B) ρAB (IA ⊗ |l〉B)

]
|k〉A. (54)

The first equality follows from the definition of the trace and using the orthonormal basis {|k〉A ⊗
|l〉B}. The second equality follows because

|k〉A ⊗ |l〉B = (IA ⊗ |l〉B) |k〉A. (55)

The third equality follows because

(IA ⊗ 〈l|B) (ΛjA ⊗ IB) = ΛjA (IA ⊗ 〈l|B) . (56)

The fourth equality follows by bringing the sum over l inside. Using the definition of trace and the
fact that {|k〉A} is an orthonormal basis for Alice’s Hilbert space, we can rewrite (54) as

Tr

{
ΛjA

[∑
l

(IA ⊗ 〈l|B) ρAB (IA ⊗ |l〉B)

]}
. (57)

Our final step is to define the partial trace operation as follows:

Definition 6 (Partial Trace). Let XAB be a square operator acting on a tensor product Hilbert
space HA ⊗ HB, and let {|l〉B} be an orthonormal basis for HB. Then the partial trace over the
Hilbert space HB is defined as follows:

TrB{XAB} ≡
∑
l

(IA ⊗ 〈l|B)XAB (IA ⊗ |l〉B) . (58)

For simplicity, we often suppress the identity operators IA and write this as follows:

TrB{XAB} ≡
∑
l

〈l|BXAB|l〉B. (59)

For the same reason that the definition of the trace is invariant under the choice of an orthonormal
basis, the same is true for the partial trace operation. We can also observe from the above definition
that the partial trace is a linear operation. Continuing with our development above, we can define
a local operator ρA, using the partial trace, as follows:

ρA = TrB{ρAB}. (60)

This then allows us to arrive at a rewriting of (57) as

Tr{ΛjAρA}, (61)
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which allows us to conclude that

pJ(j) = Tr{(ΛjA ⊗ IB)ρAB} = Tr{ΛjAρA}. (62)

Thus, from the operator ρA, we can predict the outcomes of local measurements that Alice performs
on her system. Also important here is that the global picture, in which we have a density operator
ρAB and a measurement of the form {ΛjA ⊗ IB}, is consistent with the local picture, in which the

measurement is written as {ΛjA} and the operator ρA is used to calculate the probabilities pJ(j).
The operator ρA is itself a density operator, called the local or reduced density operator, and the
next exercise asks you to verify that it is indeed a density operator.

Exercise 7 (Local Density Operator). Let ρAB be a density operator acting on a bipartite Hilbert
space. Prove that ρA = TrB{ρAB} is a density operator, meaning that it is positive semi-definite
and has trace equal to one.

In conclusion, given a density operator ρAB describing the joint state held by Alice and Bob, we
can always calculate a local density operator ρA, which describes the local state of Alice if Bob’s
system is inaccessible to her.

There is an alternate way of describing partial trace, of which it is helpful to be aware. For a simple
state of the form

|x〉〈x|A ⊗ |y〉〈y|B, (63)

with |x〉A and |y〉B each unit vectors, the partial trace has the following action:

TrB {|x〉〈x|A ⊗ |y〉〈y|B} = |x〉〈x|A Tr {|y〉〈y|B} = |x〉〈x|A, (64)

where we “trace out” the second system to determine the local density operator for the first. If
the partial trace acts on a tensor product of rank-one operators (not necessarily corresponding to
a state)

|x1〉 〈x2|A ⊗ |y1〉 〈y2|B , (65)

its action is as follows:

TrB {|x1〉 〈x2|A ⊗ |y1〉 〈y2|B} = |x1〉 〈x2|A Tr {|y1〉 〈y2|B} (66)

= |x1〉 〈x2|A 〈y2|y1〉 . (67)

In fact, an alternate way of defining the partial is as above and to extend it by linearity.

Exercise 8. Show that the two notions of the partial trace operation are consistent. That is, show
that

TrB {|x1〉 〈x2|A ⊗ |y1〉 〈y2|B} =
∑
i

〈i|B (|x1〉 〈x2|A ⊗ |y1〉 〈y2|B) |i〉B (68)

= |x1〉 〈x2|A 〈y2|y1〉 , (69)

for some orthonormal basis {|i〉B} on Bob’s system.

It can be helpful to see the alternate notion of partial trace worked out in detail. The most general
density operator on two systems A and B is some operator ρAB that is positive semi-definite with
unit trace. We can obtain the local density operator ρA from ρAB by tracing out the B system:

ρA = TrB {ρAB} . (70)
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In more detail, let us expand an arbitrary density operator ρAB with an orthonormal basis {|i〉A⊗
|j〉B}i,j for the bipartite (two-party) state:

ρAB =
∑
i,j,k,l

λi,j,k,l(|i〉A ⊗ |j〉B)(〈k|A ⊗ 〈l|B). (71)

The coefficients λi,j,k,l are the matrix elements of ρAB with respect to the basis {|i〉A ⊗ |j〉B}i,j ,
and they are subject to the constraint of non-negativity and unit trace for ρAB . We can rewrite
the above operator as

ρAB =
∑
i,j,k,l

λi,j,k,l|i〉〈k|A ⊗ |j〉〈l|B. (72)

We can now evaluate the partial trace:

ρA = TrB

∑
i,j,k,l

λi,j,k,l|i〉〈k|A ⊗ |j〉〈l|B

 (73)

=
∑
i,j,k,l

λi,j,k,l TrB {|i〉 〈k|A ⊗ |j〉〈l|B} (74)

=
∑
i,j,k,l

λi,j,k,l|i〉 〈k|A Tr {|j〉〈l|B} (75)

=
∑
i,j,k,l

λi,j,k,l|i〉 〈k|A 〈j|l〉 (76)

=
∑
i,j,k

λi,j,k,j |i〉 〈k|A (77)

=
∑
i,k

∑
j

λi,j,k,j

 |i〉 〈k|A. (78)

The second equality exploits the linearity of the partial trace operation. The last equality explic-
itly shows how the partial trace operation earns its name—it is equivalent to performing a trace
operation over the coefficients corresponding to Bob’s system.
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